16 research outputs found

    A graph-search framework for associating gene identifiers with documents

    Get PDF
    BACKGROUND: One step in the model organism database curation process is to find, for each article, the identifier of every gene discussed in the article. We consider a relaxation of this problem suitable for semi-automated systems, in which each article is associated with a ranked list of possible gene identifiers, and experimentally compare methods for solving this geneId ranking problem. In addition to baseline approaches based on combining named entity recognition (NER) systems with a "soft dictionary" of gene synonyms, we evaluate a graph-based method which combines the outputs of multiple NER systems, as well as other sources of information, and a learning method for reranking the output of the graph-based method. RESULTS: We show that named entity recognition (NER) systems with similar F-measure performance can have significantly different performance when used with a soft dictionary for geneId-ranking. The graph-based approach can outperform any of its component NER systems, even without learning, and learning can further improve the performance of the graph-based ranking approach. CONCLUSION: The utility of a named entity recognition (NER) system for geneId-finding may not be accurately predicted by its entity-level F1 performance, the most common performance measure. GeneId-ranking systems are best implemented by combining several NER systems. With appropriate combination methods, usefully accurate geneId-ranking systems can be constructed based on easily-available resources, without resorting to problem-specific, engineered components

    A new pairwise kernel for biological network inference with support vector machines

    Get PDF
    International audienceBACKGROUND: Much recent work in bioinformatics has focused on the inference of various types of biological networks, representing gene regulation, metabolic processes, protein-protein interactions, etc. A common setting involves inferring network edges in a supervised fashion from a set of high-confidence edges, possibly characterized by multiple, heterogeneous data sets (protein sequence, gene expression, etc.). RESULTS: Here, we distinguish between two modes of inference in this setting: direct inference based upon similarities between nodes joined by an edge, and indirect inference based upon similarities between one pair of nodes and another pair of nodes. We propose a supervised approach for the direct case by translating it into a distance metric learning problem. A relaxation of the resulting convex optimization problem leads to the support vector machine (SVM) algorithm with a particular kernel for pairs, which we call the metric learning pairwise kernel. This new kernel for pairs can easily be used by most SVM implementations to solve problems of supervised classification and inference of pairwise relationships from heterogeneous data. We demonstrate, using several real biological networks and genomic datasets, that this approach often improves upon the state-of-the-art SVM for indirect inference with another pairwise kernel, and that the combination of both kernels always improves upon each individual kernel. CONCLUSION: The metric learning pairwise kernel is a new formulation to infer pairwise relationships with SVM, which provides state-of-the-art results for the inference of several biological networks from heterogeneous genomic data

    ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidating the genetic basis of human diseases is a central goal of genetics and molecular biology. While traditional linkage analysis and modern high-throughput techniques often provide long lists of tens or hundreds of disease gene candidates, the identification of disease genes among the candidates remains time-consuming and expensive. Efficient computational methods are therefore needed to prioritize genes within the list of candidates, by exploiting the wealth of information available about the genes in various databases.</p> <p>Results</p> <p>We propose ProDiGe, a novel algorithm for Prioritization of Disease Genes. ProDiGe implements a novel machine learning strategy based on learning from positive and unlabeled examples, which allows to integrate various sources of information about the genes, to share information about known disease genes across diseases, and to perform genome-wide searches for new disease genes. Experiments on real data show that ProDiGe outperforms state-of-the-art methods for the prioritization of genes in human diseases.</p> <p>Conclusions</p> <p>ProDiGe implements a new machine learning paradigm for gene prioritization, which could help the identification of new disease genes. It is freely available at <url>http://cbio.ensmp.fr/prodige</url>.</p

    Enhanced protein fold recognition through a novel data integration approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein fold recognition is a key step in protein three-dimensional (3D) structure discovery. There are multiple fold discriminatory data sources which use physicochemical and structural properties as well as further data sources derived from local sequence alignments. This raises the issue of finding the most efficient method for combining these different informative data sources and exploring their relative significance for protein fold classification. Kernel methods have been extensively used for biological data analysis. They can incorporate separate fold discriminatory features into kernel matrices which encode the similarity between samples in their respective data sources.</p> <p>Results</p> <p>In this paper we consider the problem of integrating multiple data sources using a kernel-based approach. We propose a novel information-theoretic approach based on a Kullback-Leibler (KL) divergence between the output kernel matrix and the input kernel matrix so as to integrate heterogeneous data sources. One of the most appealing properties of this approach is that it can easily cope with multi-class classification and multi-task learning by an appropriate choice of the output kernel matrix. Based on the position of the output and input kernel matrices in the KL-divergence objective, there are two formulations which we respectively refer to as <it>MKLdiv-dc </it>and <it>MKLdiv-conv</it>. We propose to efficiently solve MKLdiv-dc by a difference of convex (DC) programming method and MKLdiv-conv by a projected gradient descent algorithm. The effectiveness of the proposed approaches is evaluated on a benchmark dataset for protein fold recognition and a yeast protein function prediction problem.</p> <p>Conclusion</p> <p>Our proposed methods MKLdiv-dc and MKLdiv-conv are able to achieve state-of-the-art performance on the SCOP PDB-40D benchmark dataset for protein fold prediction and provide useful insights into the relative significance of informative data sources. In particular, MKLdiv-dc further improves the fold discrimination accuracy to 75.19% which is a more than 5% improvement over competitive Bayesian probabilistic and SVM margin-based kernel learning methods. Furthermore, we report a competitive performance on the yeast protein function prediction problem.</p

    Candidate gene prioritization by network analysis of differential expression using machine learning approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals.</p> <p>To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network.</p> <p>Results</p> <p>We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (<it>Simple Expression Ranking</it>). Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the <it>Heat Kernel Diffusion Ranking </it>leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%.</p> <p>Conclusion</p> <p>In this study we could identify promising candidate genes using network based machine learning approaches even if no knowledge is available about the disease or phenotype.</p

    Network Analysis of Differential Expression for the Identification of Disease-Causing Genes

    Get PDF
    Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes

    Disease-Aging Network Reveals Significant Roles of Aging Genes in Connecting Genetic Diseases

    Get PDF
    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system–based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases

    Bayesian Markov Random Field Analysis for Protein Function Prediction Based on Network Data

    Get PDF
    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S.cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature

    Support vector machines

    No full text
    Support vector machines (SVMs) are a family of machine learning methods, originally introduced for the problem of classification and later generalized to various other situations. They are based on principles of statistical learning theory and convex optimization, and are currently used in various domains of application, including bioinformatics, text categorization, and computer vision
    corecore